Selected Fybrix/PIC Literature

To start:

Hydrogel protocols:

H. Yuan, et al. [Radboud University]
Fibrous Polyisocyanide Hydrogels for 3d Cell Culture Applications.
Nat. Protoc. (2024) in press.

Review on PIC technology

K. Liu, et al. [Chinese Academy of Science SIAT/KU Leuven]
Structure and Applications of Pic-Based Polymers and Hydrogels.
Cell Rep. Phys. Sci. (2024) 5, 101834.
https://doi.org/10.1016/j.xcrp.2024.101834.

3D cell cultures
Stem cells

H. Yuan, et al. [KU Leuven]
Synthetic Fibrous Hydrogels as a Platform to Decipher Cell-Matrix Mechanical Interactions.
Proc. Natl. Acad. Sci. U. S. A. (2023) 120, e2216934120.
https://doi.org/10.1073/pnas.2216934120.

K. Liu, et al., [Radboud university]
Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization.
Biomacromolecules (2019) 20, 826-834.
https://doi.org/10.1021/acs.biomac.8b01445.

K. Liu, et al. [Radboud University]
Synthetic Extracellular Matrices as a Toolbox to Tune Stem Cell Secretome.
ACS Appl. Mater. Interfaces (2020) 12, 56723-56730.
https://doi.org/10.1021/acsami.0c16208.

M.J.J. van Velthoven, et al. [Radboud University/Amsterdam UMC]
Potential of Estradiol-Functionalized Polyisocyanide Hydrogels for Stimulating Tissue Regeneration of the Pelvic Floor.
Adv. Therap. (2023) 6, 2300199.
https://doi.org/10.1002/adtp.202300199.

Fibroblasts and Myofibroblasts

J. Kumari, et al. [Radboud university/Radboudumc]
Antifibrotic Properties of Hyaluronic Acid Crosslinked Polyisocyanide Hydrogels.
Biomater. Adv. (2023) 156, 213705.
https://doi.org/10.1016/j.bioadv.2023.213705.

J. Kumari, et al. [Radboud university/Radboudumc]
Novel Synthetic Polymer-Based 3d Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis.
ACS Appl. Mater. Interfaces (2022) 14, 19212-19225.
https://doi.org/10.1021/acsami.2c02549.

J. Kumari, et al. [Radboud university/Radboudumc]
A Novel in Vitro Disease Model for Systemic Sclerosis Using Polyisocyanide Hydrogels.
Adv. Therap. (2023) 6, 2200180.
https://doi.org/10.1002/adtp.202200180.

M.J.J. van Velthoven, et al. [Radboud University/Amsterdam UMC]
An Improved Understanding of the Pathophysiology of Pelvic Organ Prolapse: A 3d in Vitro Model under Static and Mechanical Loading Conditions.
Adv. Healthcare Mater. (2024) 13, e2302905.
https://doi.org/10.1002/adhm.202302905.

R. Sun, et al. [Hebei University of Technology]
Microenvironment with Nir-Controlled Ros and Mechanical Tensions for Manipulating Cell Activities in Wound Healing.
Nano Lett. (2024) 24, 3257-3266.
https://doi.org/10.1021/acs.nanolett.4c00307.

Immune cells

J. Weiden, et al. [Radboudumc]
Injectable Biomimetic Hydrogels as Tools for Efficient T Cell Expansion and Delivery.
Front. Immunol. (2018) 9, 2798.
https://doi.org/10.3389/fimmu.2018.02798.

B.M. Tiemeijer, et al. [TU Eindhoven]
Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics.
Front. Bioeng. Biotechn. (2021) 9, 715408.
https://doi.org/10.3389/fbioe.2021.715408.

Organoid cultures

Y. Zhang, et al. [Radboud University/Radboudumc]
Polyisocyanide Hydrogels as a Tunable Platform for Mammary Gland Organoid Formation.
Adv. Sci. (2020) 7, 2001797.
https://doi.org/10.1002/advs.202001797.

S. Ye, et al. [Utrecht University/Utrecht UMC]
A Chemically Defined Hydrogel for Human Liver Organoid Culture.
Adv. Funct. Mater. (2020), 30, 2000893.
https://doi.org/10.1002/adfm.202000893
.

P. Schaafsma, et al. [University of Groningen/Groningen UMC]
Role of Immediate Early Genes in the Development of Salivary Gland Organoids in PIC Hydrogels.
Front. Mol. Biosci. (2023) 10, 1100541.
https://doi.org/10.3389/fmolb.2023.1100541.

In vivo studies

Wound healing:

R.C. op ’t Veld, et al. [Radboudumc]
Thermosensitive Biomimetic Polyisocyanopeptide Hydrogels May Facilitate Wound Repair.
Biomaterials (2018) 181, 392-401.
https://doi.org/10.1016/j.biomaterials.2018.07.038.

A.N. Gudde, et al. [Amsterdam UMC]
Injectable Polyisocyanide Hydrogel as Healing Supplement for Connective Tissue Regeneration in an Abdominal Wound Model.
Biomaterials (2023) 302, 122337.
https://doi.org/10.1016/j.biomaterials.2023.122337.

Drug delivery:

B. Wang, et al. [Radboudumc]
Antimicrobial and Anti-Inflammatory Thermo-Reversible Hydrogel for Periodontal Delivery.
Acta Biomater. (2020) 116, 259-267.
http://doi.org/10.1016/j.actbio.2020.09.018.

B. Wang, et al. [Radboudumc]
A Tunable and Injectable Local Drug Delivery System for Personalized Periodontal Application.
J. Control. Release (2020) 324, 134-145.
https://doi.org/10.1016/j.jconrel.2020.05.004.

Haemostasis:

Yegappan, et al. [University of Queensland, Australia]
Snake Venom Hydrogels as a Rapid Hemostatic Agent for Uncontrolled Bleeding.
Adv. Healthcare Mater. (2022) 11, 2200574.
https://doi.org/10.1002/adhm.202200574.

Gel properties

Gel mechanical properties of PIC/Fybrix hydrogels:

P.H.J. Kouwer, et al. [Radboud University]
Responsive Biomimetic Networks from Polyisocyanopeptide Hydrogels.
Nature (2013) 493, 651-655.
http://www.doi.org/10.1038/nature11839.

M. Jaspers, et al. [Radboud University]
Ultra-Responsive Soft Matter from Strain-Stiffening Hydrogels.
Nat. Commun. (2014) 5, 5808.
https://doi.org/10.1038/ncomms6808.

M. Jaspers, et al. [Radboud University]
Nonlinear Mechanics of Hybrid Polymer Networks That Mimic the Complex Mechanical Environment of Cells.
Nat. Commun. (2017) 8, 15478.
http://doi.org/10.1038/ncomms15478.

D.C. Schoenmakers, et al. [Radboud University]
Crosslinking of Fibrous Hydrogels.
Nat. Commun. (2018) 9, 2172.
https://doi.org/10.1038/ncomms15478.

PIC/Fybrix architecture

J. Vandaele, et al. [KU Leuven]
Structural Characterisation of Fibrous Synthetic Hydrogels Using Fluorescence Microscopy.
Soft Matter (2020) 16, 4210-4219.
https://www.doi.org/10.1039/c9sm01828j.

M. Jaspers, et al. [Radboud University]
Bundle Formation in Biomimetic Hydrogels.
Biomacromolecules (2016) 17, 2642-2649.
https://www.doi.org/10.1021/acs.biomac.6b00703.

In situ manipulation of mechanical propetries

P. de Almeida, et al. [Radboud University]
Cytoskeletal Stiffening in Synthetic Hydrogels.
Nat. Commun. (2019) 10, 609.
https://doi.org/10.1038/s41467-019-08569-4.

W. Chen, et al. [Radboud University]
Magnetic Stiffening in 3D Cell Culture Matrices.
Nano Lett. (2021) 21, 6740-6747.
https://www.doi.org/10.1021/acs.nanolett.1c00371.